

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

How's my fit?

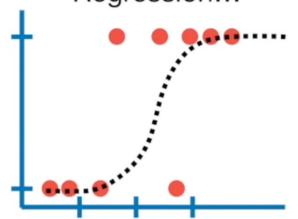
Decoding

1. Decoding

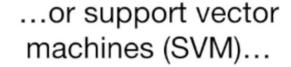
Model types, SVM, cross-validation

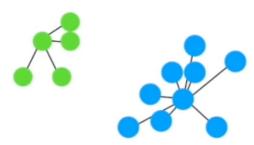
2. EMG dataset

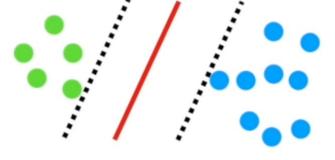
Breakout session


In a nutshell

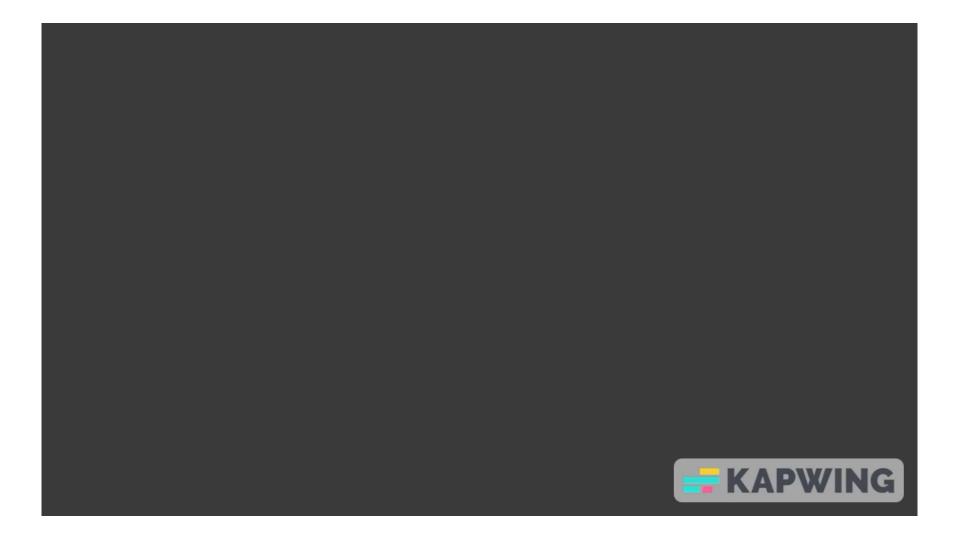
- Central aim is to identify an experimental stimulus category from patterns in the data (e.g., cats vs. dogs, werewolves vs. villagers)
- •Operationalized by fitting a supervised learning model on n-dimensional data ("training") (coordinates of points in space are usually called "features")
- With model evaluation based on generalizability to unseen or new data points ("testing") (i.e., "decoding accuracy")




Model types


We could use Logistic Regression...

...or K-nearest neighbors...



HR (heart)	GSR (skin)	Talkativeness	Turn gap (ms)	Werewolf	~
80	17	average	190		
75	15	average	180		
93	12	average	200		
120	21	extreme	130		
70	10	average	180	*	

Choosing the appropriate supervised learning method

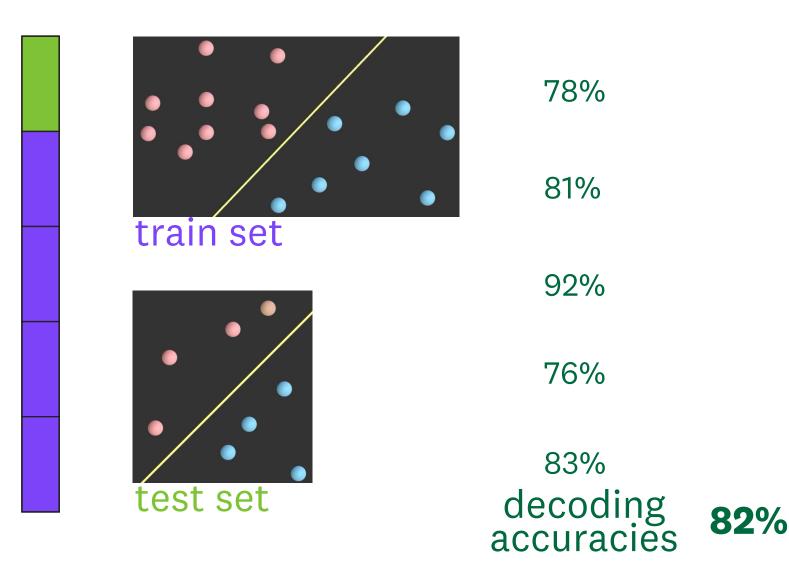
Support Vector Machines

Carving out subspaces in feature space using hyperplanes

Train vs. test set

- A suboptimal approach would be to use all of the data to estimate the model parameters (i.e., "train" the model)
- We need to know how the model will work on data it wasn't trained on

(otherwise, the model is useful in reference only to its initial dataset, and not to any other datasets – "overfitting")


 Therefore, a part of the available data needs to be held out from training

(i.e., the "test set")

Holding out part of the available data as a test set

Cross-validation

Rotation estimation for model evaluation

1. Decoding

Model types, SVM, cross-validation

2. EMG dataset

Breakout session

Lab8_Decoding.ipynb

 Decoding is about revealing the presence of (categorical) information in data

Planning

- Wrap up Data Collection asap
- •Start Data Analysis
- Hackathon next week

Week 7	Lab 7: Data Analysis	NO CLASS Data Collection	
	Lab 8: Decoding		
Week 8	Hackathon	Research: Data Analysis	
Week 9	Anatomy of a Paper	Research: Conclusion	
Week 10	11/14		
	Research Report due		