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Abstract
Purpose of Review This review examines the literature during the past 5 years (2015–2020) as it describes the contribution of
three key intrinsically connected networks (ICN) to the social cognition changes that occur in various dementia syndromes.
Recent Findings The salience network (SN) is selectively vulnerable in behavioral variant frontotemporal dementia (bvFTD),
and underpins changes in socioemotional sensitivity, attention, and engagement, with specific symptoms resulting from altered
connectivity with the insula, amygdala, and medial pulvinar of the thalamus. Personalized hedonic evaluations of social and
emotional experiences and concepts are made via the anterior temporofrontal semantic appraisal network (SAN), selectively
vulnerable in semantic variant primary progressive aphasia (svPPA). Recent research supports this network’s role in engendering
empathic accuracy by providing precision to socioemotional concepts via hedonic tuning. The default mode network (DMN),
focally affected in Alzheimer’s disease syndrome (AD), supports social cognition by providing context from learned experiences
to generate more accurate inferences about others’ thoughts, emotions, and intentions.
Summary The focal breakdown of these normal canonical intrinsically connected brain networks during neurodegeneration
sheds light on disease processes as well as on important mechanisms involved in healthy socioemotional functioning, thus
contributing important insights to the larger field of social affective neuroscience.

Keywords Social cognition . Emotion . Frontotemporal dementia . Alzheimer’s disease . Semantic variant primary progressive
aphasia . Brain networks . Functional connectivity

Introduction

It has been over 10 years since the breakthrough discovery
that the major neurodegenerative dementia syndromes each
result from focal, selective vulnerability of the brain’s intrin-
sically connected networks (ICNs) [1]. In the time since, clin-
ical research investigations have increasingly moved from
single-structure explanations for dementia patients’ cognitive
and behavioral changes to a more holistic network-based
view. This shift in interpretive approach has been particularly
fruitful as the field develops a richer understanding of the

neural etiologies of socioemotional symptoms in neurodegen-
erative disease. A key example has been the recognition that
the focal degeneration of the previously understudied “sa-
lience network” (SN) ICN [2] is the primary driver of the
drastic socioemotional impairments seen in behavioral variant
frontotemporal dementia [3–6]. The breakdown of these nor-
mally occurring brain networks during disease sheds light on
important mechanisms supporting healthy socioemotional
functioning, and thus contributes to the larger field of social
affective neuroscience.

This review examines the literature during the past 5 years
(2015–2020) as it describes the contribution of three key ICNs
to the social cognition changes that occur in various dementia
syndromes. While some of these papers do use functional
brain imaging to directly examine these important brain-
behavior relationships, the majority of studies in the dementia
field continue to use atrophy-based models in which scores on
behavior measures are correlated with regional brain volume,
either on a voxel-wise or region-of-interest level. Though only
an indirect relationship between these structural results and the
functional ICNs can be presumed, these papers with important
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findings related to regions of interest within the known distri-
bution of the ICNs will still be reviewed. The normally occur-
ring ICNs in the brain with the most explanatory relevance for
social cognition in the neurodegenerative syndromes include
the SN, involved in socioemotional sensitivity, attention, and
engagement; the semantic appraisal network (SAN), which
supports personalized hedonic evaluations of social and emo-
tional experiences and concepts; and the default mode net-
work (DMN), which provides context from learned experi-
ences to generate more accurate inferences about others’
thoughts, emotions, and intentions. For each network, its over-
arching function, specific relevance to social cognition, and
findings related to the neurodegenerative disease syndromes
will be discussed (Fig. 1).

The Salience Network: Socioemotional
Attention and Engagement

One brain network that is central to understanding
socioemotional deficits in dementia is the cinguloinsular or
“salience” ICN. It was first identified in healthy individuals
in 2007 [2] by dementia researchers who recognized that the
hubs of this functional network overlap with the key foci of
neurodegeneration in the behavioral variant frontotemporal
dementia (bvFTD) syndrome [1]. Since then, it has become
clear that SN degeneration is necessary and sufficient to

engender the core socioemotional symptoms of bvFTD [6,
7], which has raised important neuroscientific questions about
how this network supports healthy social cognition.

The SN includes two key cortical hubs in the ventral ante-
rior insula and the anterior cingulate (ACC), as well as a num-
ber of subcortical nodes including the dorsomedial thalamus,
hypothalamus, amygdala, and periaqueductal gray (PAG) [2,
8]. A central function of the SN is to alert the individual to
exogenous or endogenous stimuli that are personally salient,
i.e., that have homeostatic relevance to safety, survival, or
flourishing. Through the insula, the SN provides interoceptive
awareness, including emotionally relevant signals such as vis-
ceral emotional experiences, hedonic reward evaluations, and
negative reinforcers such as punishment cues. As a corollary
to its importance for awareness, it is also involved in alertness
and arousal, with growing evidence that the SN plays a role in
modulating both the sympathetic and parasympathetic
branches of the autonomic nervous system [9••]. When these
core SN functions are considered in terms of social cognition,
this network might best be understood to convey the capacity
for socioemotional sensitivity, i.e., the capacity to spontane-
ously and appropriately alert to social signals, and social en-
gagement, i.e., the ability to maintain social attention.

Using a functional connectivity magnetic resonance imag-
ing (fcMRI) approach, Toller and colleagues [3••] showed that
informant ratings of socioemotional sensitivity directly pre-
dicted the individual’s mean intrinsic connectivity in the SN,
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Fig. 1 The three primary
intrinsically connected networks
that support social cognition.
Functional nodes, brain
structures, socioemotional
relevance, and inter-network
information flow among the
salience network, the semantic
appraisal network, and the default
mode network ICNs. AI anterior
insula, ACC anterior cingulate
cortex, dmTH dorsomedial
thalamus, HT hypothalamus,
AMY amygdala, PAG
periaqueductal gray, ATL anterior
temporal lobe, hCAU caudate
head, blAMY basolateral
amygdala, NAc nucleus
accumbens, sgACC subgenual
anterior cingulate cortex,
d/aMPFC dorsal/anterior medial
prefrontal cortex, CA
hippocampus, MTG middle
temporal gyrus, RSC retrosplenial
cortex, IPL intraparietal lobule
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both in neurologically healthy adults across the lifespan and in
patients with neurodegenerative disease syndromes. A node
pair connectivity analysis showed that this interpersonal sen-
sitivity was mediated partly by connectivity in the cortical
nodes of the SN, i.e., the right insula and ACC, and partly
by the connectivity between the right insula and the subcorti-
cal nodes of the SN, including central pattern generators such
as the periaqueductal gray PAG, right amygdala, and hypo-
thalamus, as well as the right dorsomedial thalamus. This
group later showed that these changes in socioemotional sen-
sitivity in bvFTD patients over the disease course directly
tracked with longitudinal volume loss in the right anterior
insula node of the SN [10]. This corresponding loss of empa-
thy and SN degeneration throughout medial frontal, insular,
and thalamic regions in bvFTD has been found to correspond
directly with the loss of large layer 5 projection cells, called
Von Economo neurons (VENs), in the insula [4•]. VENs are
located only in the SN (insula and ACC), and only humans
and other highly gregarious animals including higher pri-
mates, elephants, and cetaceans have them. While their func-
tion is still being defined, VENs are generally understood to
play an important role in the kinds of rapid neuronal commu-
nication required for social cognition, and are directly targeted
in bvFTD.

Prosocial behaviors often occur as a result of spontaneous
attentional engagement during a social interaction. One’s level
of social interest and responsiveness is observable to others in
one’s milieu, and is associated with personality traits such as
agreeableness and interpersonal warmth. A recent study has
shown that informant ratings of dementia patients’ degree of
warmth were directly predicted by functional connectivity in
the SN [11•]. Importantly, SN connectivity was a stronger
predictor of patients’ loss of warmth than any structural brain
changes, highlighting the additional precision gained by ex-
amining these brain-behavior relationships using functional
network approaches rather than relying solely on atrophy-
based structural models. Another key finding this study was
that there was a wide divergence both between and within
dementia syndrome groups in the degree to which SN connec-
tivity, and interpersonal warmth, dropped from estimated
premorbid levels. While bvFTD and semantic variant primary
progressive aphasia (svPPA) patients were more likely than
Alzheimer’s (AD) or non-fluent variant PPA (nfvPPA) pa-
tients to show clinically significant drops in SN connectivity
and warmth, only about a third of those patients showed dras-
tic changes.

In the past 5 years, there have also been numerous struc-
tural brain-behavior studies with dementia patients that solid-
ify this mechanistic link between SN function and level of
spontaneous engagement with socioemotional stimuli. The
insula is a key SN structure for which dysfunction relates to
diminished or disorganized attentional engagement during so-
cial cognition. Among bvFTD and svPPA patients, Kumfor

et al. [12] showed a direct relationship between insula damage
and reduced EMG-recorded facial expressiveness in response
to positive emotional films. In another study of bvFTD pa-
tients’ responses to films, left insula volume corresponded
with patients’ tendency to report subjectively experiencing
“non-target emotions,” i.e., emotions that did not fit the situ-
ation being depicted [13]. Using a task-based fMRI paradigm
with bvFTD patients, Marshall and colleagues [14••] found
that insula activity while viewing emotional faces predicted
patients’ ability to correctly identify emotions in a post-scan
testing session. This same link between insula damage and
loss of emotional engagement has been seen in studies of
bvFTD patients’ diminished disgust reactivity, as well as their
failure to correctly identify disgust in others [15, 16].
Furthermore, Muhtadie et al.[17] showed that volume loss in
the insula also predicts dementia patients’ impairments in ap-
propriately suppressing emotions. Together, these results sug-
gest that the insula may play a role in both attention to and
organization of interoceptive information in response to
socioemotional stimuli, and functional disruptions of the
insula may result in heterogeneous emotion deficits in differ-
ent patients.

The amygdala has also been found to be important for
emotional attention in bvFTD, with evidence that amygdala
volume loss mediates patients’ deficits in reading facial emo-
tions [18], potentially via its failure to functionally facilitate
the fusiform face area (FFA) in the context of emotion [19]. In
a recent review of facial emotion reading across the FTD
syndromes, Hutchings and colleagues [20••] suggest that, in
part because bvFTD patients’ emotion reading performance
improves when emotions are exaggerated and declines with
more subtle expressions [21, 22], with the amygdala repeat-
edly associatedwith impairment across studies, the fundamen-
tal deficit in bvFTD may be attentional rather than a loss of
emotional semantics. While another study from the same
group unexpectedly showed that bvFTD patients had
increased fixations to the eyes of emotional faces, despite
reading the emotions inaccurately [23], this does not rule out
the possibility that emotion reading deficits in bvFTD are at
least in part due to breakdown of the attentional salience sys-
tem. Rather than being interpreted as reflecting normal atten-
tion, these patients’ hyper-fixation behavior may be a com-
pensation for the reduced activation of the FFA by the amyg-
dala in response to emotional faces, a pattern known to occur
in bvFTD patients [19]. Marshall and colleagues also found
reduced FFA activation in bvFTD patients in response to emo-
tional faces, but in their study this was associated with
hypoactivation of the left insula and caudate [14••] rather than
amygdala.

The medial pulvinar nucleus of the thalamus is highly con-
nected with SN structures including the insula and anterior
cingulate cortex [24], and damage to the pulvinar has been
shown to reduce functional connectivity in the SN in bvFTD

205Curr Behav Neurosci Rep (2020) 7:203–211



patients [25]. Recent work with dementia patients has demon-
strated that this key relay plays an important role in the loss of
prosocial engagement. Sturm and colleagues [26] studied the
relationships among resting parasympathetic activity, brain
structure, and helping behaviors in bvFTD and AD patients
using an empathy challenge paradigm. Volume in the medial
pulvinar directly related to whether patients were likely to
display consolation behaviors toward an examiner who pre-
tended to struggle to reach a dropped key. They also found
that left insula atrophy was associated with loss of parasym-
pathetic control, reflected in lower respiratory sinus arrhyth-
mia (RSA), as well as greater disengagement and less conso-
lation behavior. This group also showed that medial pulvinar
atrophy predicted lower levels of generosity during a prosocial
game paradigm [27].

Finally, while the majority of recent studies of SN connec-
tivity in dementia are focused on how loss of network function
produces socioemotional deficits in bvFTD and related disor-
ders, one investigation highlighted the effects of paradoxical
facilitation in the SN. Fredericks and colleagues [28••] mea-
sured SN function in patients with AD, and showed that not
only do AD patients have increased mean SN connectivity,
but that this directly predicted higher levels of anxiety.

The Semantic Appraisal Network: Emotional
Precision and Empathic Accuracy

While the SN has been the most widely studied ICN with
respect to social cognition in dementia, a second ICN called
the “semantic appraisal” (SAN) [7, 11] or “limbic” [29] net-
work has been gaining recognition for playing an important
role in socioemotional dysfunction, particularly with respect
to emotion reading. The SAN is selectively vulnerable in
svPPA syndrome [1], and while the SN is the core selectively
vulnerable ICN in bvFTD, the SAN is still substantially im-
pacted in a subset of patients with bvFTD, and is more impor-
tant than any other non-SN network in determining inter-
individual differences in bvFTD patients’ atrophy patterns
[30]. The SAN has been mapped in a number of studies of
healthy individuals [29, 31–33], and is defined as having a
hub in the dorsomedial anterior temporal lobe (ATL), and
nodes in the subgenual cingulate area of the ventromedial
orbitofrontal cortex, the head of the caudate and nucleus ac-
cumbens, and the amygdala, along with cerebellar nodes.
Importantly, for almost two decades, studies of social cogni-
tion have repeatedly conflated themedial frontal regions of the
SANwith the earlier-identified default mode network (DMN),
though they are now clearly understood to be two distinct
ICNs in neurologically healthy adults [29]. As a result, many
socioemotional functions previously attributed to the DMN
are more correctly understood as being performed by the
SAN.

While studies of socioemotional deficits in bvFTD and
svPPA repeatedly emphasize the importance of structures in
the SAN using primarily atrophy-based methods, there are as
of yet only a few direct studies correlating SAN network func-
tional connectivity to behavior in healthy individuals. The
SAN has been referred to as the “prejudice network” [34,
35] because of its role in automated evaluations and bias,
and others have called it the “affiliation network” [36], in
acknowledgment of its importance for socioemotional func-
tioning. Combining its roles in prejudice and affiliation, more
accurately the SAN provides a range of hedonic evaluations of
positive and negative valence in response to both
socioemotional and non-social stimuli. While the ATL hub
plays a key role in semantic conceptual knowledge about the
world, the subgenual cingulate, caudate, and nucleus accum-
bens regions are involved in making personalized hedonic
evaluations of those concepts [7]. Social and emotional con-
cepts in particular are more likely to incorporate hedonic eval-
uations as a part of their semantic structure [37], and these
evaluations appear to be critical for enabling precise emotion
reading, both of self and others, and provide a foundation for
empathic accuracy in response to ambiguous or complex
socioemotional cues. Baez et al. [38] extended this link be-
tween the amygdala and emotion beyond the face, by showing
that amygdala volume was the primary predictor of perfor-
mance when FTD patients were asked to attribute degree of
intentionality to harmful actions involving video characters
whose faces were obscured.

In part due to their interrelated functions supporting social
cognition, mean functional connectivity in the SN and SAN
are highly correlated in both healthy individuals and in de-
mentia patients [11•], and the network dynamics involved in
the interaction between these two ICNs have not yet been
well-characterized experimentally. However, given what we
know about the flow of information among the component
structures in these networks, current models suggest that at
times stimuli are first assigned meaning and valence by the
SAN before the SN is able to recognize the personal salience
of those stimuli in order to redeploy attentional resources to
them, thus information flow may at times start with the SAN
and flow to the SN7. Currently, studies are rare [11•] that
directly examine the interplay of SN and SAN functional net-
work dynamics in health or dementia, representing an impor-
tant gap in this literature.

Despite this, there is substantial evidence for how degener-
ation and dysfunction in the SAN leads to an array of emotion
deficits in patients with dementia. These studies can be cate-
gorized as reflecting two highly related emotional functions
mediated by the SAN: understanding socioemotional experi-
ences and concepts at a nuanced level, and providing hedonic
valence to emotional and social concepts.

Recent work has emphasized the importance of connec-
tions between the subgenual cingulate OFC regions, involved
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in hedonic evaluation, with anterior temporal regions mediat-
ing semantic knowledge, to explain dementia patients’ impair-
ments decoding the nuances of socioemotional material.
Precision in both emotional and social concepts appears to
rely on linking personalized hedonic evaluations from the
OFC with anterior temporal lobe semantic knowledge, and
dementia-related damage to this connection results in inaccu-
rate emotion reading and loss of richness for social conceptual
information. Particularly in svPPA patients, who more uni-
formly exhibit dysfunction in the SAN, reduced temporal-
OFC connection has been found to predict poor conceptuali-
zation of subcategories of emotion, such as distinguishing
among emotions with the same valence like sadness and fear
[20]. Using functional connectivity analyses in svPPA pa-
tients, Bejanin and colleagues [39] showed that disconnection
betweenmedial temporal and rostromedial frontal regions pre-
dicted poor affective cognitive inferences. Reduced integrity
of the uncinate fasciculus (UF), an important white matter
tract in the SAN that connects ventromedial OFC and anterior
temporal regions, was found to explain inaccurate emotion
attribution in a study of cognitively unimpaired patients with
amyotrophic lateral sclerosis [40]. UF frontotemporal connec-
tivity was the main etiology of deficits in bvFTD patients who
had difficulty naming emotions depicted in videos [41•].

Studies in dementia patients have recently highlighted the
role of the anterior temporal (ATL) node of the SAN in plac-
ing emotions in a more precise socioemotional semantic con-
text that improves empathic accuracy. This is evident in stud-
ies using simple emotion identification, such as in a task-based
fMRI study by Marshall and colleagues’[14••] showing that
anterior temporal functional activation during passive emo-
tional face viewing was the best predictor of how well
svPPA patients named emotions outside of the scanner. But
it is also notable in studies of more complex socioemotional
constructs. In two studies of bvFTD patients, ATL volume
[42] and inferior ATL connectivity [41••] were the primary
predictors of patients’ ability to understand social normative
rules. Structural studies of the neural correlates of interpreting
complex paralinguistic social signals like sarcasm [43] and
facial signals with incongruent contexts [44•] have empha-
sized the importance of the ATL, particularly in patients with
svPPA disproportionately affecting the SAN. Additionally, a
recent study of humor processing showed that volume loss in
a network including the ATL predicted bvFTD and svPPA
patients’ inability to detect humor from non-verbal cartoons,
particularly with novel scenarios that required additional con-
textual processing [45].

A number of studies in the past 5 years have elucidated
how dysfunction in the ventromedial frontal-subcortical nodes
of the SAN disrupt patients’ ability to derive accurate hedonic
evaluations of emotions in both self and other. Normally,
humans covertly simulate emotions, an involuntary behavior
which is not merely a form of emotional contagion, but which

functions to provide an internal interoceptive representation of
the other’s emotion that allows more accurate decoding of that
emotion [46, 47]. A study by Marshall and colleagues [47]
found that accuracy of facial emotional mimicry has been
found to directly predict accuracy of emotion naming across
a sample of bvFTD, svPPA, and nfvPPA patients. While
bvFTD patients showed overall reduction of both facial mim-
icry and emotion reading, svPPA patients mimicked emotions
but did not correctly identify them, suggesting that a disrup-
tion not in the interoceptive signaling, but in the patients’
interpretation of these signals’ emotional meaning, was re-
sponsible for their emotion naming deficits. Hua and col-
leagues [48] also performed facial EMGwith bvFTD patients,
and found that patients had inappropriately positive facial re-
actions while viewing negative emotional faces, which
corresponded with lack of real-world empathy as quantified
by informants. This dysregulated, stereotyped positive emo-
tion corresponded to a network including inferior frontal and
temporal SAN regions, potentially reflecting patients’ inabil-
ity to assign a correctly nuanced range of hedonic valences to
internally experienced or observed emotions. BvFTD patients
have been documented to have insensitivity to punishment
cues, finding normally aversive stimuli such as bad smells
rewarding [49]. A study examining the neural correlates of
empathy in bvFTD and svPPA patients found that volume in
the nucleus accumbens, a node in the anterior SAN that plays
a pivotal role in reward processing, directly predicted patients’
degree of real life prosocial motivation [50]. Together these
results suggest that disruption of patients’ hedonic evaluations
uncouples their internal experience from the external emotion-
al context, contributing to loss of empathic accuracy.

The Default Mode Network: Situational
Contextualization of Emotional Experience

The last ICN of particular importance for understanding
social cognition in dementia is the DMN, one of the first
intrinsic brain networks to be identified; it was initially
thought to be active only while the brain was at rest (i.e.,
not engaged in a specific cognitive task). However, it has
since become clear that this task-free DMN activity was
actually occurring because research participants were
spontaneously engaging in memory rumination and
mind-wandering between cognitive tasks. The DMN is
now understood to function predominantly as a memory
network 51, 52, and has since been found to be selectively
vulnerable in typical Alzheimer’s disease syndrome [1,
53]. It can be divided into at least two functionally dis-
tinct units [54]: (1) a ventral subsystem, incorporating the
hippocampus, ventral posterior cingulate, and posterior
inferior parietal lobule, which is involved in retrieving
and re-experiencing episodic memories, and (2) a dorsal
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subsystem incorporating the antero-dorsal medial prefron-
tal cortex, the temporoparietal junction, the posterior cin-
gulate cortex, and the precuneus, which is involved in
top-down selection and comparison of memories and is
more directly relevant to social cognition.

The primary function of the DMN in social cognition is to
provide contextualized interpretations of one’s own and
others’ behavior, in the form of self-referential processing
and social perspective taking based on previous experience.
Specifically, this system uses memories to model future pre-
dictions about ambiguous or unknown interpersonal informa-
tion, such as others’ beliefs, emotions, and intentions [55, 56].
This makes the dorsal/anterior nodes of the DMN particularly
important for complex social reasoning, including theory of
mind and moral reasoning, because these regions support the
capacity to reason about others’ goals, and to determine the
potential socioemotional impact of one’s choices on others
[56].

There have been a set of interesting studies during the past
5 years that clarify the contribution of the DMN to complex,
context-driven aspects of social cognition in dementia pa-
tients. Caminiti and colleagues [57] analyzed resting function-
al connectivity in patients with bvFTD and correlated it with
their performance on a story-based empathy task that required
them to make inferences about characters thoughts and feel-
ings based on non-verbal contextual cues. Patients’ ability to
correctly attribute emotions to the characters corresponded
directly with network connectivity in the dorsal anterior nodes
of the DMN, emphasizing the importance of this region in
decoding contextual cues in order to perform empathic per-
spective taking. In a study where bvFTD patients were asked
to read the emotions on faces that were combined with mis-
leading non-facial contextual cues, they were found to make
errors because they attended too much to the context and
failed to adequately consider facial emotions [58]. This high-
lights the relative preservation of the DMN’s social contextu-
alization function in bvFTD, particularly in contrast to their
loss of the SN and SAN functions that more directly support
emotion reading.

Other studies of the DMN and bvFTD have more explicitly
focused on memory for social features. Wilson and colleagues
have done a series of studies of social scene construction, first
demonstrating that the neuroanatomic substrate of scene con-
struction in FTD involves the DMN [59], and then performing
a study showing that when bvFTD patients are asked to sim-
ulate scenes, the level of detail they are able to generate for
social scenes is impoverished compared to non-social scenes,
and was significantly worse than AD patients [60•]. Finally,
additional studies have extended this area of “social memory.”
Wong and colleagues [61] had AD and bvFTD patients play a
social “trust game” and engage in a non-social lottery, and
found that for both groups, memory for the social condition
was better than for the non-social condition, and corresponded

with a network of structures that included medial frontal (for
bvFTD) and hippocampal (for AD) nodes of the DMN.

Summary and Conclusions

One of the most important trends occurring during the past
5 years in this area has been the shift from simple atrophy-
based modeling of brain-behavior relationships toward more
sophisticated multimodal analyses that incorporate resting- or
task-based functional connectivity and structural connectivity
of white matter tracts. While structural analyses of social be-
havior are valuable, future studies clarifying how neurodegen-
eration impacts the functional dynamics of these interconnect-
ed ICNs will likely provide important new insights into be-
havior that have previously been missed. Beyond functional
studies, the role of white matter structural connectivity in de-
mentia patients’ social cognition is also likely important but
remains understudied [62, 63]. The role of the cerebellum in
social cognition is another area in which there has not yet been
adequate study [64, 65], despite substantial evidence that the
cortical ICNs are recapitulated in the cerebellum [32], that
cerebellar change can produce social cognitive symptoms
[66•], and that cerebellar disconnection if not frank atrophy
is common in a number of neurodegenerative diseases, includ-
ing those with significant behavioral symptoms [67–69].
Ideally, in the next 5 years, more precise and creative social
cognitive phenotyping of these patients will increasingly be
combined with multimodal, computational brain analytic ap-
proaches, which will significantly clarify the network under-
pinnings of socioemotional behavior not only in neurodegen-
erative disease but also in healthy development as well.
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